久久久久国产一级毛片高清板-久久久久国产一级毛片高清片-久久久久激情免费观看-久久久久精彩视频-97成人在线视频-97大香伊在人人线色

醌氧化還原介質對厭氧氨氧化生物活性的影響

錦集
  RMS 通過厭氧氨氧化生物抑制TN的去除性能
  RMs 可以顯著提高厭氧氨氧化菌關鍵酶的活性
  RMs是推斷發揮作用的Q/QH2在厭氧氨氧化過程
  作為主要的原因,可能會阻止ladderane RMs 和關鍵酶之間的聯系
文章信息
1.文章歷史
   2013年9月修訂
   2013年10月31日修訂編版
   2013年11月1日被接受
   2013年11月10日在網上發布
2.關鍵詞
   厭氧氨氧化
   氧化還原介質
   肼脫氫酶
   亞硝酸鹽還原酶
   硝酸還原酶
3.摘要
   本研究shou先探討厭氧氨氧化生物/關鍵酶和醌的氧化還原介質之間的活動關系,其中蒽醌-2,6-二磺酸(AQDS),2-羥基-1,4- napthoqui-無(LAW)和蒽醌-2-羧酸(AQC)。實驗結果表明,總脫氮性能隨三種氧化還原介質(RMS)用量的增加而呈下降趨勢。例如,當AQC增加到0.8毫米,TN的去除率急劇減少到17.2mg-N/gVSS/h,只能控制大約20%。這種現象可能是微生物中毒與細胞外的RM增加而引起的。然而,粗肼脫氫酶,亞硝酸鹽還原酶,和硝酸還原酶的活性增強比沒有RMS的對照實驗約0.6-3倍。RMS被推斷在厭氧氨氧化過程中發揮輔酶/泛醌(Q/QH2)作用。此外,具體ladderane 膜結構可以阻隔RMS和厭氧氨氧化膜內的關鍵酶。主要原因可能是RMS對厭氧氨氧化生物和關鍵酶的反向影響。
1.簡介
   厭氧氨氧化(ANAMMOX)現在被確認為是一種新穎的重要的生物脫氮工藝。它可以在厭氧條件下將NH4與NO2直接轉化成N2(Strouset等人,1999)。與傳統工藝相比(硝化反硝化生物),厭氧氨氧化過程提供了顯著的優點,如對氧氣和有機碳,低污泥產量和減少CO2和NO2的排放(Opden Campet等人,2006)。近日,唐等人(2010)報告了一個高達74.3-76.7 kg-N/m3/d的脫氮率在一個實驗室規模的厭氧氨氧化UASB反應器,在廢水生物脫氮的厭氧氨氧化工藝的高電位。然而,如此高的脫氮率(NRR)是通過連續添加厭氧氨氧化污泥到目標反應器,其中生物量濃度的增加高達42-57.7VSS/L(唐等人,2010)。此外,厭氧氨氧化菌相對長的培養時間為也會導致較長的啟動時間,通過降低厭氧氨氧化菌的豐度使厭氧氨氧化系統更加脆弱。因此,提高生物質厭氧氨氧化菌活性,并進一步縮短厭氧氨氧反應器的啟動是很趣味性和挑戰性的課題。研究人員已經進行了大量的努力, 通過外場能量(磁場力,低強度超聲)或添加幾種微量營養元素增加厭氧氨氧化菌的活性。例如,劉等。(2008)施加的磁場成功地提高厭氧氨氧化菌的活性,在60T的磁化率下,**大脫氮率提高了30%。類似地,段等,(2011)表明,總氮(TN)厭氧氨氧化菌的去除率提高25.5%,通過施加0.3W/cm2超聲強度與4分鐘的**佳照射時間,這個效果可以持續6天左右。除了外部*域的應用,喬等(2012)表明Mno2粉末的加入也可以使厭氧氨氧化菌的脫氮率為無二氧化錳粉的2倍。
近日,氧化還原介質(RMS)被發現在有機和無機污染物的厭氧生物轉化中起著重要的作用(范德齊和塞萬提斯,2009)。有一些研究集中在氧化還原介質的反硝酸化脫氮工藝中的作用。阿蘭達泰馬瑞等人(2007)通過反硝化生物,包括蒽醌-2,6-二磺酸(AQDS),1,2-萘醌-4-磺酸酯e(NQS).2,6-disulfonate(AQDS), 2-羥基-1,4-萘醌,研究了同時轉換硫化物和硝酸鹽不同醌的氧化還原介質的影響。他們證明,NQS必須使用硫化氫作為電子供體的**高硝酸鹽還原率(荷蘭達泰馬瑞等人,2007)。Guoet等人(2010)探討了氧化還原介質催化脫氮工藝與蒽醌(AQ)由海藻酸鈣固定。他們還發現,加入500個蒽醌固定化珠會加速脫氮約兩倍。劉等(2012)證明,固定到功能聚合生物載體2-磺酸蒽醌(00.4mmol/L),可以提高脫氮率約1.5倍。直到現在還沒有關于RMS對厭氧氨氧化生物有影響的報告。
反硝化生物量**關鍵酶位于細胞膜或細胞膜外介質。因此,RMS可以接觸這些酶和加快硝酸鹽或亞硝酸鹽的生物降解速率。然而,厭氧氨氧化菌的關鍵酶是位于厭氧氨氧化菌膜內,并在其膜引起質子動力勢和隨后的由膜結合ATP酶合成ATP(圖1中示出)。從厭氧氨氧化菌外面進入厭氧氨氧化膜,RMS必須穿過細胞壁,細胞質膜,卵胞漿內膜和厭氧氨氧化膜以便與關鍵酶接觸。厭氧氨氧化菌膜結構由C18和C20脂肪酸組成,包括3個或5個線性級鏈環丁烷(sinningheet等人,2002)。它們被脂結合到甘油骨架或醚結合的烷基鏈(sinningheet等人,2005)。因此,ladderane可能會阻止RMS和厭氧氨氧化膜內部的關鍵酶之間的接觸。
本研究的目的是討調查三種RMS對厭氧氨氧化生物活性的影響。厭氧氨氧化菌的關鍵酶(肼脫氫酶硝酸還原酶、亞硝酸還原酶)上RMS的影響也進行了研究。還討論了在兩個厭氧氨氧化生物和關鍵酶上的效果的可能機制。所測試的RMS包括蒽醌-2,6-二磺酸(AQDS),2-羥基-1,4-萘醌(法)和蒽醌-2-羧酸(AQC)。
2.方法
2.1. 微生物與資料媒體
厭氧氨氧化污泥用于接種源自形反應器的厭氧氨氧化實驗規模的實驗室。反應器的內徑和高度分別為8和45厘米。這種反應器在670天的操作的總脫氮(TN)率為 8.0 kg-N/m3/d 。 KSU-1株(AB057453.1)的厭氧氨氧化菌約占種子的總生物量的70–75%。在實驗中使用的介質主要是由在(NH4)2SO4和亞硝酸鈉中的銨和亞硝酸鹽的形式。該微量礦物質培養基的組成如范德格拉夫等人描述(1996)。#p#分頁標題#e#
2.2 批量測試
為了確定不同的RMS濃度對特殊厭氧氨氧化活性的影響,制定了七組是RMS從0到0.8毫米不同濃度的實驗。該實驗是在七個120毫升含100毫升培養基瓶的血清瓶,每個包含厭氧氨氧化的生物質具有不同的RMS(MLVSS濃度2000 mg/L)。生物樣品取自反應器并在礦物質中洗滌三次,以除去殘留的氮氣。將pH值調整**7.5,將溫度保持在35± 1 °C左右的水域搖床。搖動轉速設定為150轉的轉速,保持生物量和媒體之間的充分接觸。血清瓶內容物與二氮的氣體被洗清以除去溶解的氧。初始NH4 -N和NO2 -N濃度都設定在50毫克/升。特別厭氧氨氧化活性,隨著時間流逝由在瓶里的氨和亞硝酸的濃度每單位生物量降低濃度曲線峰值改變。使用無菌注射器每小時收集一次樣品,并通過0.45lm孔徑的膜吹掃來分析NH4 -N,NO2- N,NO3- N,和RMS濃度。
2.3分析方法
Concentrations of nitrite and nitrate were determined by using on-exchange chromatography (ICS-1100, DIONEX, AR, USA) with an Ion Pac AS18 anion column after ltration with 0.22 lm poresize membranes. NH4-N, MLSS and MLVSS concentrations were measured according to the Standard Methods (APHA, 1995).
硝酸鹽和亞硝酸鹽的濃度通過使用離子交換色譜測定法(ics-1100,Dionex,AR,USA)與0.22ml 孔徑膜過濾PAC AS18陰離子柱。NH4-N,MLSS和MLVSS濃度按標準方法測定(APHA,1995)。
pH值的測量是通過使用一個數字ph計(phs-25,雷磁公司,中G),而DO使用數字DO做計進行測量(YSI,模型55,美G)。使用分光AQDS,AQC和規律濃度均在其**大吸光度采用分光光度法測量(k = 328,336,452 nm)用分光光度計(v-560uv /VIS分光光度計,日本)根據哈藤巴赫等人。(2008)和勞等人。(2002)
2.4生物質提取物的制備及酶活性的測定
從我們的實驗室規模的反應器中量取5克(濕重)厭氧氨氧化生物質。生物樣品離心8000 rpm離心轉,在4°C進行 20 分鐘,隨后用磷酸鈉緩沖溶液洗滌兩次(20毫米,pH 7.0)。洗滌后的沉淀在20毫升緩沖液溶解再沉淀后超聲(225 W,4°C 30分鐘,超聲波處理器CPX 750,美G)。細胞團通過離心(22000轉)分離,在4°C進行 30分鐘。將上清液儲存在4°C作為蛋白質和酶活性測定細胞提取物。蛋白質濃度的測量根據布拉德福德(布拉德福德法,1976),以牛血清白蛋白為標準。據島村等人描述的肼脫氫酶酶活性方法測定(2007),并且反應用分光光度計描繪為在550 納米處增加在標注混合物中細胞色素C的吸光度(v-560紫外可見分光光度計,雅有限公司,日本)。該混合物由100毫米磷酸鉀緩沖液(pH 7.0),50lm馬心臟細胞色素C(氧化型),酶解液適量,和25lm肼。肼脫氫酶(HDH)活性表示為細胞色素減少/毫克蛋白/分鐘。硝酸還原酶(NAR)的活性測定Meincke等人(1992)通過測定亞硝酸鹽消耗方法。氯酸鈉作為電子受體。測定含有22 mm NaClO3和11毫米50毫米亞硝酸鈉鉀磷酸鹽緩沖液,pH值7。反應通過加入酶開始。一個單位的酶活性被denedaslmol 亞硝酸鹽還原酶(NIR)的活性作為賽義德在Hira等人描述的方法的基礎上(2012)以減少甲基紫(MV)作為電子供體。反應混合物含有100 毫米磷酸鉀緩沖液(pH7.0),MV(3毫米),亞硝酸鈉(6毫米)和0.1毫升的生物質提取物在塞緊的4毫升試管內制備。反應是由連二亞硫酸鈉的注射開始(12毫米)。酶活性被作為亞硝酸鹽的還原。所有的測定混合物要在35± 1°C進行。
2.5系統分析
所有在本文中提出的數據是一式三份,實驗的數據的平均值。通過使用單因素方差分析每與鄧肯的多范圍檢驗(SPSS 19),和每次形成統計分析的P<0.05值被認為是統計學顯著性。

英語原文
Effects of quinoid redox mediators on the activity of anammox biomass
highlights
RMs addition depressed TN removal performance by anammox biomass.
RMs could markedly enhance the key enzymes activities of anammox bacteria.
RMs was inferred to play the role as Q/QH2 during anammox process.
Ladderane as the main reason might block the contact between RMs and key enzymes.
Article info
Article history:
Received 19 September 2013
Received in revised form 31 October 2013
Accepted 1 November 2013
Available online 10 November 2013
Keywords:
Anammox
Redox mediator
Hydrazine dehydrogenase
Nitrite reductase
Nitrate reductase
abstract
This study rst explored the relationship between the activity of anammox biomass/key enzymes and quinoid redox mediators, which were anthraquinone-2,6-
disulfonate (AQDS),2-hydroxy-1,4-napthoqui-none (LAW) and anthraquinone-2-carboxylic acid (AQC). Experimental results demonstrated that the total nitrogen removal performance showed a downward trend with all three redox mediators (RMs) dosage increasing. For instance, when the AQC addition increased to 0.8 mM, the TN removal rate sharply reduced to 17.2 mg-N/gVSS/h, only about 20% of the control. This phenomenon might be caused by microbial poisoning with the extracellular RMs additions. Nevertheless, the crude hydrazine dehydroge-nase, nitrite reductase, and nitrate reductase activities were enhanced with RMs addition, about 0.6–3folds compared to the control experiments without RMs addition. The RMs was inferred to play the role as ubiquinol/ubiquinone (Q/QH2) during the anammox process. Furthermore, the specic ladderane membrane structure could block the contacting between RMs and the key enzymes inside anammox-some. This might be the main reason for the contrary effects of RMs on anammox biomass and the key enzymes.#p#分頁標題#e#
1. Introduction
Anaerobic ammonium oxidation (anammox) process is now
recognized as a novel and important process in biological nitrogen removal, which can directly convert NO 2 to N2 gas with NH4 under anaerobic conditions (Strous et al., 1999). Compared with the conventional biological processes (nitrication–denitrication),anammox process offers signicant advantages such as no demand for oxygen and organic carbon, low sludge production and reduced
CO2 or N2O emissions (Opden Campet al., 2006).Recently, Tang
et al. (2010) reported a very high nitrogen removal rate of 74.3–76.7 kg-N/m3/d in a lab-scale anammox UASB reactor, which demonstrated high potential of anammox process in biological nitrogen removal from wastewaters. However, such a high nitrogen removalrate (NRR) was achieved through the continuous addition of anammox seed sludge into the targeted reactor, in which the biomass
concentration increased as high as 42.0–57.7 g-VSS/L (Tanget al.,2010). Furthermore, the relative long doubling time of anammox bacteria will also cause a longer startup period and make the anammox system more vulnerable with low anammox bacteria abundance. Consequently, enhancing the bacterial activity of anammox biomass and further shortening the start-up period of anammox reactors are subjects of great interest and challenge.
Researchers have made numerous efforts to increase the activity of anammox biomass by utilizing external eld energy (mag-netic eld, low intensity ultrasound) or adding some kinds of micronutrient. For instance, Liu et al. (2008) applied magnetic eld successfully to enhance the activity of anammox bacteria whereby the maximum nitrogen removal rate increased by 30% at magnetic value of 60.0 mT in long term. Similarly, Duan et al. (2011) demon-strated that total nitrogen (TN) removal rate of anammox bacteria increased by 25.5% by applying ultrasound intensity of 0.3 W/cm2 with the optimal irradiation time of 4 min, and this effect could last
for about 6 days. Besides the application of external eld, Qiaoet al. (2012) demonstrated that the addition of MnO2 powder could also increase the nitrogen removal rate of anammox biomass about 2 times as high as that without MnO2 powder addition.
Recently, redox mediators (RMs) were found to play an important role in the anaerobic transformation of organic and inorganic contaminants (Van der Zee and Cervantes, 2009).There were a few studies focused on the role of redox mediators on nitrogen removal by denitrication process. Aranda-Tamaura et al.(2007) investi-gated the impacts of different quinoid redox mediators on the
simultaneous conversion of sulphide and nitrate by denitrifying biomass, including anthraquinone-2,6-
disulfonate (AQDS), 2-hy-droxy-1,4-naphthoquinone and 1,2-naphthoquinone-4-sulphonate(NQS).They demonstrated that NQS had the highest nitrate reduc-
tion rate using sulphide as electron donor (Aranda-
Tamaura et al.2007). Guo et al. (2010) explored the possibility of redox mediator catalyzing denitrication process with anthraquinone (AQ) immo-bilized by calcium alginate. They also found that addition of 500 anthraquinone immobilization beads would accelerate the denitri-fying rate about 2 times. Liu et al. (2012) demonstrated that anthraquinone-2-sulfonate (0.04 mmol/L) immobilized into the functional electropolymerization biocarriers could increase the
denitrication rate about 1.5 folds. Until now there was no report on the effects of RMs on anammox biomass.
Most key enzymes of denitrifying biomass are located on the cell membrane or the cell membrane periplasma. Thus, RMs could contact these enzymes and accelerate the biodegradation rate of nitrate or nitrite. However, all the key enzymes of anammox bac-teria are located inside anammoxosome, and on its membrane giving rise to a proton-motive-force and subsequent ATP synthesis by
Membrane-bound ATPases (shown in Fig.1). From the outside of anammox bacteria into anammoxosome, RMs must cross cell wall,cytoplasmic membrane, intracytoplasmic membrane and anammox some membrane in order to contact with the key enzymes.
The ladderane of the anammoxosome membrane consist of C18
and C20 fatty acids including either 3 or 5 linearly concatenated cyclobutane rings (Sinninghe et al., 2002). They are ester bound to a glycerol backbone or ether bound as alkyl chains (Sinninghe et al., 2005). Therefore, the ladderane might block the contacting between RMs and the key enzymes inside anammoxosome.
The objective of this study was to investigate the effects of three kinds of RMs on the activity of anammox biomass. The effects of RMs on the key enzymes (hydrazine dehydrogenase nitrate reductase and nitrite reductase) of anammox bacteria were also studied.The possible mechanisms of effects on both anammox biomass and the key enzymes were also discussed. The tested RMs included anthraquinone-2,6-disulfonate (AQDS), 2-hydroxy-1,4
-naphtho-quinone (LAW) and anthraquinone-2-carboxylic acid (AQC).
2. Methods
2.1. Microorganisms and feed media
The anammox sludge used for inoculation originated from a laboratory-scale anammox upow column reactor in our lab. The inner diameter and height of the column-type reactor were 8 and 45 cm, respectively. The working volume of this reactor was 2 Land continuously operated under 35 ± 1 °C. The total nitrogen(TN) removal rate of this reactor reached 8.0 kg-N/m3/d during 670 days’operation.
Anammox bacteria of KSU-1 strain(AB057453.1) accounted for about 70–75% of the total biomass in seed biomass. The media used in the experiments mainly consisted of ammonium and nitrite in the form of (NH4)2SO4 and NaNO2. The composition of the trace mineral medium was as described by vander Graaf et al. (1996).#p#分頁標題#e#
2.2. Batch experiments
In order to ascertain the effects of different RMs concentrations on specic anammox activity, seven sets of batch experiments were conducted with the RM concentration from 0 to 0.8 mM.The tests were carried out in seven 120 ml serum vials containing 100 ml medium, each containing anammox biomass (MLVSS con-centration of 2000 mg/L) with varied RMs additions. Biomass sam-ples were taken from the reactors and washed three times with
mineral medium to remove residual nitrogen. The pH was adjusted to 7.5 and the temperature was maintained at 35 ± 1 °C in a water bath shaker. The shaking speed was set at 150 rpm to keep the full contact between biomass and media. The serum bottle contents were purged with dinitrogen gas to remove dissolved oxygen. Ini-tial NH
4 -N and NO2 -N concentrations were set at 50 mg-N/L. Spe-
cic anammox activity was estimated from the peak of the curve indicated by the decrease of ammonium and nitrite concentrations per unit biomass concentration in the vials as time lapsed. The samples were collected every hour using a sterile syringe and purged through 0.45
lm pore size membranes to analyze the NH4 -N, NO2 -N, NO3 -N and RMs concentrations.
2.3. Analytical methods
Concentrations of nitrite and nitrate were determined by using ion-exchange chromatography (ICS-1100, DIONEX, AR, USA) with an IonPac AS18 anion column after ltration with 0.22lm pore size membranes. NH4-N, MLSS and MLVSS concentrations were measured according to the Standard Methods (APHA, 1995). pH measurement was done using a digital pH meter (PHS-25, Leici Company, China), while DO was measured using a digital DO meter(YSI, Model 55, USA). The concentrations of AQDS, AQC and LAW were measured spectrophotometrically at their absorbance maxi-mum (k = 328, 336 and 452 nm, respectively) using a spectropho-
tometer(V-560UV/VIS Spectrophotometer,Jasco,Japan) according to Hartenbach et al. (2008) and Rau et al. (2002).
2.4. Preparation of biomass extracts and determination of enzyme activity 
     5 g (wet weight) anammox biomass was taken from our lab-scale reactor. The biomass samples were centrifuged at 8000 rpm at 4 擄C for 20 min followed by washing twice with sodium phos-phate buffer solution (20 mM, pH 7.0). The washed pellets were then resuspended in 20 ml of the same buffer and lysed by freezing and thawing followed by sonication (225 W, at 4 擄C for 30 min,
Ultrasonic processor CPX 750, USA). Cell mass was separated by centrifugation (22 000 rpm), at 4 擄C for 30 min. The supernatant was stored at 4 擄C and used as cell extract in the determination of protein and enzyme activity. Protein concentration was measured according to the Bradford procedure (Bradford, 1976), using BSA
as a standard. Enzyme activity of hydrazine dehydrogenase was according to the methods described by Shimamura
et al. (2007), and the reactions were depicted as an increase in the absorbance of cytochrome c at 550 nm in the standard mixture using a spectrophotometer (V-560 UV/VIS Spectrophotometer, Jas-co, Japan). The mixture consisted of 100 mM potassium phosphate buffer (pH 7.0), 50lM horse heart cytochrome c (oxidized form),an appropriate amount of enzyme solution, and 25 lM hydrazine.The hydrazine dehydrogenase (HDH) activity was expressed as
lmol of cytochrome c reduced/mg protein/min. Nitrate reductase
(Nar) activity was assayed in accordance with the methods re-corded by Meincke et al. (1992) by measuring the nitrite consump-tion. NaClO3 was used as electron acceptor. Assays contained 22 mM NaClO3 and 11 mM NaNO2 in 50 mM potassium phosphate buffer, pH 7.0. The reaction was started by the addition of the en-zyme. One unit of enzyme activity was dened as lmol of nitrite oxidized/mg protein/min. Nitrite reductase (Nir) activity was as-sayed on the basis of the methods described by Hira et al. (2012)using reduced methyl viologen (MV) as electron donors. The reac-tion mixture containing 100 mM potassium phosphate buffer (pH
7.0), MV (3 mM), sodium nitrite (6 mM) and 0.1 ml biomass extracts was anaerobically prepared in a stoppered 4.0 ml cuvette. The reac-tion was started by the injection of sodium dithionite (12 mM). Aunit of enzyme activity was dened as lmol of nitrite reduced/mg protein/min. All the assay mixtures were incubated at 35 鹵 1 擄C 2.5. Statistical analysis
All the data presented in this paper were the mean values of data from triplicate experiments. Statistical analysis was per-formed by using one-way ANOVA with the Duncan’s multiple range test (SPSS 19.0) and values of p < 0.05 were considered to be statistically signicant.
 
 
主站蜘蛛池模板: 免费在线观看黄色的网站| 久久一区二区精品| 亚洲九九香蕉| 欧美激情国产一区在线不卡| 日韩免费中文字幕| 污色网站| 一级毛片一级片| 四虎在线免费播放| 久久夜视频| 思思91精品国产综合在线| 亚洲视频二区| 日韩视频一区二区在线观看| 欧美在线中文字幕高清的| 久久国产三级| 日韩论理| 亚洲国产精品欧美综合| 三级网站免费观看| 黄色一级视频网| 日本午夜免费福利视频| 日韩精品无码一区二区三区| 日本成人午夜| 天天操夜夜操视频| 日本与大黑人xxxx| 欧美精品九九99久久在观看| 国产高清一级毛片| 99re国产视频| 欧美伊人| 国产特级全黄一级毛片不卡| 欧美伊人久久久久久久久影院| 久久青草社区| 青青久精品观看视频最新| jizz视频| 亚洲欧美日韩不卡一区二区三区| 国产精品国色综合久久| 制服丝袜中文字幕在线观看| 欧美激情精品久久久久| 18jzz大全中文| 成年人视频在线免费看| 天天草夜夜骑| pans视频| 久久精品第一页|